Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS

نویسندگان

  • Soyoung Park
  • Se-Yeong Hamm
  • Hang-Tak Jeon
  • Jinsoo Kim
چکیده

This study mapped and analyzed groundwater potential using two different models, logistic regression (LR) and multivariate adaptive regression splines (MARS), and compared the results. A spatial database was constructed for groundwater well data and groundwater influence factors. Groundwater well data with a high potential yield of ≥70 m3/d were extracted, and 859 locations (70%) were used for model training, whereas the other 365 locations (30%) were used for model validation. We analyzed 16 groundwater influence factors including altitude, slope degree, slope aspect, plan curvature, profile curvature, topographic wetness index, stream power index, sediment transport index, distance from drainage, drainage density, lithology, distance from fault, fault density, distance from lineament, lineament density, and land cover. Groundwater potential maps (GPMs) were constructed using LR and MARS models and tested using a receiver operating characteristics curve. Based on this analysis, the area under the curve (AUC) for the success rate curve of GPMs created using the MARS and LR models was 0.867 and 0.838, and the AUC for the prediction rate curve was 0.836 and 0.801, respectively. This implies that the MARS model is useful and effective for groundwater potential analysis in the study area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groundwater Potential Mapping Using the Integration of the Weight of Evidence and Logistic Regression Models (A Case Study: Nahavand)

Today, supplying water to meet the sustainable development goals is one of the most important concerns and challenges in most countries. Therefore, identification of the areas with groundwater potential is an important tool for conservation, management and exploitation of water resources. The purpose of this research was to prepare the potential groundwater map in Nahavand, Hamedan Province, us...

متن کامل

Predicting Flow Number of Asphalt Mixtures Based on the Marshall Mix design Parameters Using Multivariate Adaptive Regression Spline (MARS)

Rutting is one of the major distresses in the flexible pavements, which is heavily influenced by the asphalt mixtures properties at high temperatures. There are several methods for the characterization of the rutting resistance of asphalt mixtures. Flow number is one of the most important parameters that can be used for the evaluation of rutting. The flow number is measured by the dynamic creep...

متن کامل

Determining Effective Factors on Forest Fire Using the Compound of Multivariate Adaptive Regression Spline and Genetic Algorithm, a Case Study: Golestan, Iran

Determining Effective Factors on Forest Fire Using the Compound of Multivariate Adaptive Regression Spline and Genetic Algorithm, a Case Study: Golestan, Iran    Pahlavani, P., Assistant professor at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran Raei, A., PhD Candidate of GIS at School of Surveying and Geospatial Engineering, College of Engineeri...

متن کامل

Relevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation

This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...

متن کامل

Determining Effective Factors on Forest Fire Using the Compound of Multivariate Adaptive Regression Spline and Genetic Algorithm, a Case Study: Golestan, Iran

Determining Effective Factors on Forest Fire Using the Compound of Multivariate Adaptive Regression Spline and Genetic Algorithm, a Case Study: Golestan, Iran    Pahlavani, P., Assistant professor at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran Raei, A., PhD Candidate of GIS at School of Surveying and Geospatial Engineering, College of Engineeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017